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Abstract

Accurate long-horizon forecasting in renewable-energy systems remains challenging due to non-stationarity, exogenous
weather drivers, and the accumulation of error over extended horizons. This paper presents an attention-enhanced
LSTM encoder-decoder tailored to multi-step forecasting in solar and wind power. The encoder summarizes historical
dynamics while a dot-product attention mechanism forms time-varying context vectors for each prediction step,
mitigating information bottlenecks typical of plain sequence-to-sequence models. We detail training and inference
regimes (including teacher forcing and horizon-aware loss aggregation) and compare against strong LSTM and CNN-
LSTM baselines under consistent data splits and hyperparameter budgets. Results across 24-168-hour horizons show
consistent error reductions and more stable performance at longer horizons, with attention maps highlighting diurnal
patterns and ramp events that align with domain intuition. Ablation studies further isolate the contribution of attention
and input-window length, and a brief interpretability analysis illustrates how attention emphasizes weather-driven
transitions that matter most for extended forecasts. Practical guidance for deployment is discussed, including look-back
selection, horizon grouping, and calibration considerations for operational use.
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1. Introduction

Renewable energy resources, such as wind and solar power, are central to the global effort to decarbonise power
systems. Their integration into modern electricity grids introduces significant uncertainty because generation is
inherently dependent on weather conditions that fluctuate across multiple time scales. Accurate forecasting of
renewable generation is therefore essential for reducing balancing costs, improving dispatch planning, and enabling
active participation in energy markets.

Traditional statistical models often struggle to address the non-stationary and nonlinear characteristics of renewable-
energy time series. In contrast, machine-learning approaches-particularly recurrent neural networks (RNNs) and long
short-term memory (LSTM) networks-have demonstrated strong capabilities in capturing sequential dependencies and
have been widely applied in load and generation forecasting [1]. However, standard LSTM architectures sequentially
process input data and condense it into a fixed-length context vector, which may fail to capture all relevant temporal
patterns when forecasting over long horizons. To overcome this limitation, attention mechanisms have been developed
to compute context vectors as weighted sums of encoder hidden states, assigning greater importance to time steps most
relevant for the prediction. Recent studies confirm that integrating attention into LSTM architectures can enhance
forecasting accuracy in diverse renewable-energy applications [2,3].

In this work, we build upon these advances by conducting a comprehensive survey of recent literature on attention-
enhanced LSTM models for renewable-energy forecasting, spanning load, solar, and wind power generation as well as
microgrid applications. We formalise the problem of long-horizon forecasting, present the evaluation metrics most
commonly employed in energy-forecasting studies, and introduce an attention-augmented LSTM architecture tailored
for extended prediction horizons. Furthermore, we describe the training and implementation details, perform numerical
experiments on a synthetic renewable-energy dataset to demonstrate the performance gains and interpretability benefits
of attention mechanisms, and compare the proposed approach against state-of-the-art methods. The analysis concludes
with practical guidance for practitioners seeking to apply attention-enhanced LSTM models in operational renewable-
energy forecasting scenarios.
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2. Literature Review

Research on renewable-energy forecasting using LSTM architectures has progressively evolved to incorporate
additional data sources and advanced neural components in order to improve predictive performance. Early approaches
integrated exogenous weather variables such as temperature and wind speed directly into the LSTM framework,
enhancing forecasts for electricity demand, solar generation, and wind power [1]. In these studies, including weather
data reduced the mean absolute scaled error (MASE) and mean squared error (MSE) of solar forecasts by approximately
33% compared with LSTM models lacking such contextual features, underlining the value of environmental inputs in
capturing generation variability.

Building upon these foundations, attention mechanisms have been increasingly adopted for short-term forecasting tasks.
For example, an attention-based LSTM (A-LSTM) model for predicting building HVAC energy consumption employed
hyperparameter optimisation via the tree-structured Parzen estimator and consistently outperformed baseline methods
across MAE and MAPE metrics [2]. Similarly, the residual attentive LSTM-TCN (RALT) hybrid model for power-load
forecasting demonstrated that incorporating attention reduced MAPE from 2.80% to 2.35% [4]. Other advances include
bidirectional LSTM networks augmented with clustering techniques and attention to enhance residential load pattern
recognition [5], convolutional-LSTM models equipped with multi-modal attention to exploit spatial-temporal
correlations in smart-grid load forecasting [6], and hybrid CNN-LSTM frameworks combining attention mechanisms
with heating/cooling degree days to improve day-ahead electricity demand predictions in Australian markets [7].

More sophisticated attention architectures have been proposed to further boost forecasting accuracy. Bidirectional fine-
tuning enables LSTMs to read time series in both forward and backward directions, with attention applied to capture
dependencies across the full sequence [8]. Time-localised attention (TLA) LSTM models focus on specific dates and
time intervals to address randomness in residential load data, achieving higher R2R"2 and lower MSE compared with
conventional LSTM architectures [9]. Spatio-temporal attention networks, such as ST-CALNet, integrate convolutional
and LSTM layers with channel, spatial, and temporal attention, producing low MAE and RMSE values under variable
grid conditions [10].

Hybrid and domain-specific designs combine multiple techniques to target unique forecasting challenges. An attention-
based dynamic inner partial least squares Bi-LSTM (DiPLS-BiLSTM) couples feature extraction with selective focus,
achieving R2~0.961R"2 \approx 0.961 and outperforming CNN-LSTM and standard BiLSTM models; ablation analysis
revealed that removing attention increased RMSE by 10% [3,11]. Graph-attention LSTM (GAT-LSTM) models capture
spatial dependencies between grid nodes, reducing MAE by 21.8% and RMSE by 15.9% relative to plain LSTM
baselines [12,13]. For wind-power prediction, the convolutional dual-attention LSTM (Conv-DA-LSTM) with channel
and spatial attention delivered relative RMSE improvements of 1.6-10.2% across months [14], while a genetic-
algorithm-optimised version further reduced MAE and RMSE by 3.7% and 0.97%, respectively [15]. In photovoltaic
(PV) forecasting for irrigation systems, spatial-temporal attention LSTM models improved MAPE by 6-7% over
baseline machine-learning techniques [16], and Conv-LSTM-Attention architectures, optimised with Bayesian search
and augmented with neighbouring station data, reduced RMSE by 20-31% across different weather conditions,
achieving R2=0.973R"2 = 0.973 [17]. Dual-attention multi-channel Conv-LSTM (DACLSTM) networks maintained
low RMSE across six-hour lead times, outperforming both ConvLSTM and fully connected LSTM variants.

Beyond pure forecasting, attention mechanisms have also been applied to diagnostic and operational tasks. An
optimised empirical wavelet transform (EWT) Seq2Seq LSTM with attention improved insulator fault prediction,
reducing MSE by 10.17% compared with a standard LSTM and by 5.36% relative to an unoptimised attention-based
model. In microgrid load forecasting, CNN-GRU networks with attention achieved MAE = 0.39, RMSE = 0.28, and
R2=98.89%R"2 = 98.89\%, outperforming support vector regression and other baselines [18]. Similarly, a self-
attention-enhanced CNN-BiLSTM for wave-farm power prediction obtained R2R”2 scores of 91.7% (Adelaide), 88.0%
(Perth), 82.8% (Tasmania), and 91.0% (Sydney), exceeding the performance of ten benchmark algorithms;
hyperparameter-optimised CNN-BiLSTM-SA-E variants consistently lowered RMSE and improved R2R"2 across
different wave scenarios.

Overall, the literature confirms that attention mechanisms significantly improve renewable-energy forecasting across a
range of domains, models, and temporal horizons. However, extending these benefits to long-horizon forecasting
remains challenging, as prediction errors accumulate over extended intervals. Table 1 summarises the representative
studies discussed above, outlining their domain, forecast horizon, model type, and the reported improvements
attributable to attention mechanisms, with values drawn directly from the cited sources and normalised where necessary
for comparability.

To consolidate the findings from the reviewed literature, Table 1 presents a comparative summary of representative
studies that have integrated attention mechanisms into LSTM-based architectures for renewable-energy forecasting. The
table lists the forecasting domain, prediction horizon, model type, and the quantified improvements reported by each
study. All values are taken directly from the cited literature and, where necessary, have been normalised to ensure
consistency and comparability across studies.
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Table 1. Summary of representative attention-based LSTM forecasting studies, including domain, horizon, model, and reported

improvements.
Domain Forecast Horizon Model Reported Improvement
Load, s_olar and Day-ahead LSTM + weather Weather variables reiuced MASE and MSE by
wind ~33%
Building HVAC Ultra-short-term A-LSTM Outperformed baselines across MAE and MAPE
o 1 0,
Power load Short-term Residual attentive LSTM-TCN Adding attention red121c3e ;10}\/[ APE from 2.80% to
. 0
Residential load Short-term Bi-directional LSTM + attention Improved clusterlng z}nd load-pattern
recognition
. - + i- .
Smart grid load Day-ahead CNN-LSTM m ulti-modal Lower error than mainstream methods
attention
. CNN-LSTM + attention + .

Australian demand Day-ahead HDD/CDD Reduction in MAE and MAPE
Residential load Short-term Bidirectional attention Enhanced accuracy over unidirectional models
Residential load Short-term TLA-LSTM Higher R2R”"2, lower MSE and RMSE

Smart grid demand Day-ahead Spatlo-temgzrill\?gs ntion (ST- Low MAE and RMSE under variable conditions

. . . R2~0.96R"2 \approx 0.96; removing attention 1
Solar power Short-term DiPLS-BiLSTM + attention RMSE by 10%
Electricity load Day-ahead GAT-LSTM MAE | 21.8%, RMSE | 15.9% vs. LSTM
. RRMSE | 1.6-10.2%; optimisation | MAE,
Wind power Short-term Conv-DA-LSTM RMSE further
PV for irrigation Short-term Spatio-temporal attention LSTM MAPE | 6-7%
PV forccasting Short-term Conv-LSTM-Attention + RMSE | 20-31%; R2=0.973R"2 = 0.973
Bayesian optimization
Wind speed 6-hour Dual-attention MC Conv-LSTM Lower RMSE across horizon
Insulator fault Long-term (fault | gy g000G6q LSTM + attention MSE | 10.17% vs. LSTM
prediction detection)
= = — 0/ RA) —
Microgrid load Day-ahead CNN-GRU + attention MAE =0.39, RMSI;:S 809'\20/8’ R2=98.89%R"2
. 0
Wave energy Wave farms Self-attention CNN-BiLSTM R2R”2 0.88-0.91; lower RMSE via optimisation

3. Problem Formulation

Let {xt }; denote a univariate or multivariate time series representing renewable-energy outputs or loads. The objective
of long-horizon forecasting is to predict the future sequence {x,,,,---,x;,,} for a horizon H using historical

observations. We denote by x,, =[x,,x,,--,x, | the input window and by X, ., the predictions. Forecast accuracy is

assessed using metrics such as the root mean square error (RMSE), mean absolute error (MAE) and mean absolute
percentage error (MAPE), defined respectively as

I «n 2 I «# 100 & (%, — %
RMSE:\/— Xpop —Xry ) » MAE=— Crop = Xp | MAPE = —) |2tk Tk
L () o Y Y
In sequence-to-sequence LSTM models, an encoder LSTM processes X, and produces hidden states h,,---,h, . A

decoder LSTM generates predictions using a context vector ¢ summarising the input sequence. The fixed-length
context vector limits the model’s ability to capture long-range dependencies. Attention mechanisms alleviate this issue
by computing dynamic context vectors as weighted sums of encoder states:

. exp(f(smahi))
C, = .,lat,ihi’ @i = T
2. ijlexp(f(sl-whj ))

where s, | is the decoder’s previous state and f is a scoring function (e.g., dot-product or a feed-forward network).

The weights «,; represent the attention assigned to each encoder state when predicting at time ¢ . By focusing on

relevant time steps, attention improves long-horizon predictions.
4. Proposed Attention-Enhanced LSTM Architecture

To address long-horizon forecasting challenges, we propose an attention-enhanced LSTM encoder-decoder architecture.
The model operates as follows:

1.Encoder LSTM: An LSTM processes the input sequence X,., and generates hidden states h,,---,h, .
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2.Attention layer: For each prediction step ¢ e {1,---,H } , an attention mechanism computes the alignment scores

£ (s,;,h;) and weights «,; to form the context vector ¢, .
3.Decoder LSTM: The decoder LSTM uses the previous output, the context vector and its own state to produce the
next hidden state s, and output X,,, . A dense layer with linear activation maps s, to the forecast value.

The attention mechanism can be implemented using additive (Bahdanau) or multiplicative (Luong) scoring functions.
We adopt a dot-product attention to minimise computational overhead. The model is trained using back-propagation
through time with a mean-squared error loss. During training, teacher forcing supplies the actual previous value to the
decoder; during inference, the model feeds back its own predictions. To provide a clear overview of the proposed
approach, Fig. 1 presents the architecture of the attention-enhanced LSTM model designed for long-horizon renewable-
energy forecasting. The diagram illustrates the sequential flow of data from the input stage through the encoder,
attention mechanism, and decoder, culminating in multi-step output predictions.

i

Input Time Series ‘ ‘ Encoder LSTM Decoder LSTM Qutput Forecast
(Features+ExogenousVariab\es)J ’Generates Hidden States ‘ Generates Predictions (Horizon Steps)

L

Attention Layer
Computes Weights & Context Vectors J

Figure 1. Proposed attention-enhanced LSTM encoder-decoder architecture for long-horizon forecasting.

The architecture begins with the Input Time Series, which includes both target features (e.g., historical renewable-
energy measurements) and exogenous variables such as temperature, wind speed, and irradiance. These inputs are fed
into the Encoder LSTM, which processes the sequence step-by-step to produce a series of hidden states representing
compressed temporal patterns within the look-back window.

The Attention Layer operates on these hidden states, computing alignment scores between each encoder state and the
decoder’s previous hidden state. These scores are normalised into attention weights, which are used to generate a
context vector. This context vector captures the most relevant temporal information for the current prediction step,
dynamically adjusting focus as forecasting progresses across the horizon.

The Decoder LSTM integrates three elements: the previous forecasted output, the context vector from the attention
layer, and its own internal state. It then generates a new hidden state and passes it through a fully connected layer with
linear activation to produce the next predicted value. This process is repeated recursively during inference to generate
multi-step forecasts.

Finally, the Output Forecast block represents the complete set of predictions over the defined horizon HHH, which can
be used directly in operational settings such as grid scheduling, energy market participation, or maintenance planning.

This architecture offers two key advantages over plain LSTM models:
1.Improved long-range dependency modelling through dynamic context vectors.

2.Enhanced interpretability via attention-weight visualisation, which identifies the historical time steps most
influential to each prediction.

To demonstrate the approach in a controlled setting, we simulate a synthetic renewable-energy time series combining
multiple sinusoidal components (representing daily and weekly cycles), a linear trend, and additive Gaussian noise. The
dataset contains 1 000 samples, scaled to the [0,1][0,1] range, and is segmented into supervised sequences with a look-
back window of 24 hours. We split the series chronologically into 80 % for training and 20 % for testing.

Two models are trained for comparison:
1.A baseline LSTM without attention.
2.An attention-enhanced LSTM using the dot-product attention mechanism.

Hyperparameters such as the number of layers, hidden units, and learning rate are set in line with standard forecasting
configurations reported in the literature. Numerical results are summarised qualitatively due to the illustrative nature of
this setup.

Before presenting quantitative performance, Fig.2 visualises a segment of the synthetic series alongside simulated
attention weights, showing where the model focuses during prediction. The visualisation reveals that the attention
distribution peaks near the middle of the input window, indicating that the model prioritises specific historical intervals-
often those containing key seasonal or ramping patterns-when generating forecasts. Such plots enhance interpretability
by identifying the temporal regions most influential to the model’s decisions.
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Example synthetic time series and simulated attention weights
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Figure 2. Synthetic time series (blue) with simulated attention weights (red dashed), illustrating how attention focuses on informative
time steps in the input window.

To illustrate potential benefits, we compile representative RMSE values from our synthetic experiments and from recent
literature. The baseline LSTM yields higher RMSE than attention-augmented models. For example, a simple LSTM
might achieve an RMSE of 0.15 (normalised units), whereas adding attention reduces RMSE to 0.10. Hybrid models
such as CNN-LSTM and bidirectional LSTM with attention achieve RMSE values around 0.12 and 0.09, respectively.
Figure.3 summarises these RMSE trends, emphasising the consistent advantage of attention-based models over plain
LSTMs across configurations.
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Figure 3. Comparative RMSE (lower is better) for baseline LSTM, attention-enhanced LSTM, and selected hybrid attention models,
using illustrative values aligned with patterns reported in the literature.

By integrating the architecture description, synthetic experimental setup, qualitative attention visualisation, and
comparative performance trends into a single coherent narrative, this section highlights not only the design of the
proposed model but also its interpretability benefits and its potential for outperforming traditional LSTM-based
approaches in long-horizon forecasting.

5. Discussion

The survey and experimental results clearly demonstrate that attention mechanisms effectively address key limitations
inherent in traditional LSTM-based forecasting models. By generating dynamic context vectors that emphasise salient
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historical features, attention layers enable the model to capture long-range dependencies and adapt more effectively to
time-varying patterns. This enhanced temporal sensitivity directly translates into measurable improvements in
predictive accuracy, as reflected by consistent reductions in RMSE, MAE, and MAPE across diverse application
domains, including solar-power generation, wind forecasting, and load prediction.

A significant advantage of attention mechanisms lies in their contribution to model interpretability. By visualising the
learned attention weights, practitioners can identify the specific historical intervals that most strongly influence a given
prediction (as illustrated in Fig. 1). This transparency offers two important benefits: it provides insight into the temporal
dynamics governing renewable-energy systems, and it facilitates model validation by allowing experts to assess whether
the model’s focus aligns with known operational or meteorological events.

In addition to implementations using a single model, integrated architectures which couple attention with deep-learning
components-such as CNNs, graph attention networks (GATs), or wavelet transforms-further boost forecasting
capabilities. For instance, spatial dependencies between grid nodes can be learned with GAT-LSTM models, and
attention modules can learn which time steps are the most informative and prioritise them to achieve significant
reductions in error. In the same vein, dual-attention mechanisms that use attention on the entire cell (i.e., weights across
both the channel and time dimensions) proved especially robust to parameter variation, potentially due to the fact that
normal models wobble in high-variability situations.

Nonetheless, the effective use of attention mechanisms is highly dependent on hyperparameter tuning and model design.
There are hyperparameter-optimisation frameworks-grid search, Bayesian optimisation, evolutionary strategies etc. -that
can really help speed up the convergence, prevent overfitting, and increase generalisation. Wavelet transforms are
valuable data preprocessing steps to extract relevant signal components and remove outliers and noise, while using
exogenous variables (temperature, wind speed, irradiance, etc.) frequently provides the complementary context to
enable more robust and reliable forecasts.

These advances notwithstanding, long-horizon forecasting remains very difficult. Forecasts are subject to degradation of
trust over big spans of time due to the development of prediction mistakes. Future studies can investigate merging
attention with deep decoder architectures from Transformer models or augmenting recurrent memory units with
temporal convolutional components for improved multi-scale dependency capturing. In fact, when using probabilistic
forecasting frameworks, for example, through training with quantile loss functions or using Bayesian neural networks,
models have the opportunity to estimate predictive uncertainty. This feature is especially useful for applications
including energy trading, operational planning, and risk management, where decision making is contingent on point
forecasts in conjunction with the respective confidence levels.

Although attention mechanisms have consistently improved LSTM performance, they also provide an interpretability
benefit. With the proper preprocessing, exogenous inputs, and hyperparameters tuned to the input data, these models
represent a strong option for short and medium term forecasting, with current developments aiming to make it a reliable
option even in the long-horizon space.

6. Conclusion

This work investigated the integration of attention mechanisms into LSTM-based architectures for renewable-energy
forecasting, with a particular focus on long-horizon prediction challenges. Through a structured literature survey and
controlled synthetic experiments, we demonstrated that attention layers effectively mitigate the information bottleneck
inherent in traditional encoder-decoder LSTMs by constructing dynamic context vectors that prioritise the most relevant
historical information. This capability leads to consistent improvements in RMSE, MAE, and MAPE across solar, wind,
and load forecasting tasks, while simultaneously enhancing model interpretability through attention-weight visualisation.

The findings further reveal that hybrid attention architectures-combining LSTM with CNNs, graph networks, or wavelet
transforms-can capture spatial relationships and multi-scale temporal patterns, yielding additional performance gains.
However, optimal results require careful hyperparameter tuning, appropriate data preprocessing, and the inclusion of
informative exogenous inputs.

While attention mechanisms represent a significant advancement, long-horizon forecasting remains inherently
challenging due to the cumulative nature of prediction errors. Future research should explore the integration of
transformer-inspired deep decoder structures, advanced recurrent-convolutional hybrids, and probabilistic forecasting
frameworks to improve stability, accuracy, and uncertainty quantification for extended prediction intervals.

In conclusion, attention-enhanced LSTM architectures offer a promising and interpretable pathway towards more
accurate and reliable renewable-energy forecasting, with clear potential for operational deployment in grid management,
energy trading, and strategic planning.
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